Implementation of an Interactive Human vs Robot
“Water Pong” Game

Clément Detry, Loris Podevyn, Ivan Poliakov, Bunyamin Thijssen
Department of Data Science and Artificial Intelligence
Maastricht University
Maastricht, The Netherlands

Abstract—This article describes an interactive game involv-
ing a human and a throwing robot called ‘“Water Pong”. The
goal is to throw a ball into several cups disposed in a triangular
form. The robot is defined by three degrees of freedom, which
allows it to throw towards a target with a parabolic trajectory.
Cups are located using Computer Vision, giving the robot the
ability to see the target it needs to hit. This vision is also used
to track the projectile launched by the human and the robot
to define a successful shot.

Index Terms—Al, Interactive Game, Computer Vision, Ball
Throwing

I. INTRODUCTION

In recent years, the idea of using robotics to adapt existing
interactive games has become less science fiction and more
of a reality. Whether it is for training purposes in sports [/1],
in rehabilitation [2]] or purely in entertainment as proposed
through this paper, many fields have been positively affected
by the contribution of robotics. Nowadays, many games have
already been adapted into a kind of human against robot
format and are increasingly available and affordable on the
market.

The goal in this research is to develop the modern day
party game of “Water Pong”, in which the user can interact
and play against a robotic arm. As the robotic arm mimics a
player throwing, there exist several complexities to control
its movements: recognizing targets with a fixed-positioned
camera and calculating the optimal trajectory and motor
configurations to perform the shot. This allows us to research
in Computer Vision to develop a way to detect the cups, and
follow the score of the game by tracking the ball in real-time
to see if either the player or the robotic arm hit one target.
Other research is being conducted on building trajectories in
order to make the robot accurate and robust to various cup
positions. Along with research, we would like to implement
an interactive aspect of the game so that the robot can track
the score, the rules, and collect data about the person it is
playing against.

In section our work is compared to the current state-
of-the-art. Section [lI| provides an insight of the hardware
we used, and the environment of the robotic setup. Section
explains the algorithms developed. Section contains

This report was prepared in partial fulfilment of the requirements for
the course KEN3300 Project 3-1 at the Department of Data Science and
Artificial Intelligence, Maastricht University. Supervisors: Rico Mockel,
Lucas Dahl. Examinators: Rico Mockel and Alexia Briassouli.

the description of the experiments, and their results are
given in section [V] A discussion and some interpretations
of the results are included in section [VII The section [VII]
concludes our work and section|[VIII|gives a brief perspective
on possible future work to improve on our developments.

A. Related Work

Playing an adapted version of “Water Pong” has already
been done before [3]] with a robot called Versaball developed
by Empire Robotics [4]. However, we are the first to use
EDMO servo motor [5] technology to perform the robot
throws for this kind of game, as Versaball uses air compres-
sion and a gripper [[6]. For the Computer Vision part, we
took different elements from several projects. To perform
cup detection, the most advanced technique that met our
needs was to use Hough Circle Transform [7]. In order to
track the ball in real-time, and any existing QR-codes on the
image, the YOLO algorithm was chosen [8]]. Specifically, the
fifth and last updated version of YOLO was employed [9].
After developing the detection of QR-codes, which are our
reference objects, as well as the detection of cups, we needed
a way to measure the actual distances between the detected
objects. We were inspired by an article [10] to implement
this task in this way.

II. HARDWARE AND ENVIRONMENT SETUP
A. Microcontroller

The microcontroller being used is an Adafruit Feather MO
board. The script for package execution is written in C and
has to be submitted only once to the microcontroller via
Arduino. All the motors are connected to the microcontroller,
which allows for simultaneous movement of all the compo-
nents. The package has the form of ag, by, cg, a1, b1, c1, ...
where each tuple of 3 values represents the motor number,
target angle and delay respectively. The data package is
transferred via USB cable causing data transfer overhead
that interrupts the motor movement, hence, the first tuple is
always filled with heap data and required for the shot motor
movement starts only after the overhead is avoided.

B. Motors

The motors in this project are EDMO servo motors [3]],
which just like the spoons and the camera were kindly
provided to us by DKE Swarmlab at Maastricht University
[T1]. All the motors are depicted in Figure [I] as they are

positioned in the setup. The bottom motor is responsible
for rotation of the setup and, therefore, the direction of the
shot. The top 2 motors are responsible for throwing the
ball. The throw distance is controlled by the delay on the
top motor (for example, if the top motor starts its rotation
0.1 seconds after the middle motor started its rotation, the
throw distance is smaller than if the motors were moving
simultaneously). The top motor is coloured black, which
indicates it is lighter and weaker than the red motors. Thus,
the black motor is mainly used for throwing distance control
and increased momentum, while the middle red motor is the
carrying power of the throw.

31
cm

Fig. 1: Motors

C. Spoon

Spoon is attached to the top motor and it carries the ball.
Since the initial maximum throwing distance was unsatisfac-
tory, several longer spoons were developed by our colleagues
in SwarmLab. Longer spoons provide bigger momentum,
however, they also make the setup more shaky. This was
attempted to be solved with a more solid material and
structure of the spoon (third spoon in Figure [2). However,
the motors could not deal with such a weight, so it was
decided to move back to a lighter material but keep the
spoon structure (fourth spoon in Figure [2) which appeared
to be the best option.

D. Ball

The ball chosen for this project is a navy blue fluffy ball
of 3.5 cm in diameter that weighs about 1g as we can see in
Figure [3] The main advantage of this ball is its consistency
which allows the robot to throw the ball farther than a classic
ping-pong ball.

13.5 21 24 24
cm cm cm cm

=

Fig. 2: Spoons

3.5

Fig. 3: Ball

E. Cups

The cups used were classic red plastic cups, 12 cm high
and 10 cm wide as shown in Figure [d] The issue with this
type of cup is that the impact with the ball can make them
fall, because they are very light. To solve this problem,
we decided to add weight with small stones, but the ball
would now bounce out of the cups when the player scored
it. The final solution used was to add white sand inside
them to cushion the ball every time a cup is hit. This also
allows the ball to be elevated in the cups so that the camera
can continue to detect it anywhere on the board within the
targets. The choice of sand rather over liquid was made
because of the material and density of the ball changes when
it is covered in water, but we want to avoid influencing its
weight during the game.

10cm

12
cm

Fig. 4: Cup

F. Camera

To detect the game board and the different objects placed
on it, a camera is positioned on an overhead arch at 97
cm height in order to be able to capture the whole game
with a wide enough opening angle. Two different types of
cameras were tested. The first one was a Creative Live Cam
Sync HD, filming at 720p resolution with a frame rate of
30fps and without autofocus. The quality of this camera was
not good enough when it came to tracking the ball during
throws, since it detected too much blur. To solve this issue, a
second camera was considered, a Logitech C922 Pro (Figure
[3). The main difference of this camera is that it can capture
at 60fps and it can use autofocus, which reduces the blur
caused by the rapid movement of the ball. The camera is
directly connected by USB to the computer since it is the
component responsible for operating the entire Computer
Vision system.

&

& logitech

Fig. 5: Logitech C922 Pro

G. Environment and Setup

The environment in which the tests of the game ‘“Water
Pong” were carried out, is in a large closed room with
good, adjustable lighting. No prior knowledge about the
environment is given to the robot before each execution.
The final game setup is a rectangular board made of a 133
by 43 cm piece of wood covered by a large green grid paper
spread on top of it. The overhead arch is also made of wood
and is not fixed as it can be moved forward and backward.
The camera is attached to it using a loop fastener to maintain
it as stable as possible. Each side of the board contains 6
cups placed in a pyramid shape at the beginning of each
game. The last element added to the board is 2 QR-codes to
be used as reference object to calculate the position of the
cups in real-time on the grid. Figure [6] represents what the
fully assembled setup looks like.

III. METHODOLOGIES
A. Look-up Table

To allow for precise shots, we built a large look-up table
that contains motors configuration (bottom motor angle and
top motor delay) per target. The targets can be seen in Figure
[7l The entries can be visually split into vertical columns.
First, the delay is determined based on the delay for the
entry from the look-up table that is closest to the real target.
This is due to the fact that it is hard to establish a relationship
between the delay and the throwing distance, so the delay
value from the look-up table is taken as it is(see Figure[§|and

Fig. 6: Assembled setup

Fig. 7: Lookup table

Fig. 8: Lookup table 1

Fig. 9: Lookup table 2

Figure 0). Then, the second closest entry from the look-up
table is chosen and the bottom motor angle is interpolated
between the two suggested angles from the look-up table. As
it turns out later in the experiments, all of the missed shots
hit the edge of the cup, which can be resolved by adjusting
the delay. Therefore, in the actual game we added the feature
that the robot starts adjusting the delay by £10 if it cannot
hit the target (so at first -10, then +10, then -20, etc).

B. Hough Circle Transform

It is essential for the robot to detect the cups and know
their positions in order to shoot the ball into them. The
Hough Circle Transform (HCT) technique is a famous way
to find the center coordinates of circular shapes in an image
[12]. Since we have a fairly large contrast between the
cups (white) and the background (green), HCT fully meets
our needs. A circle with radius r and center (a,b) can be
described with the parametric equations:

x = a+r*cos(d)
y=Db+r=*sin(f)

If the radius of the search circles on an image is known,
the objective is to find coordinates (a,b) of the centers.
In Figure [I0] each point in the geometric space on the
left generates a circle in the parameter space on the right.
The circles in the parameter space intersect at (a,b) that
corresponds to the center in the geometric space.

Fig. 10: Parameter space

In order to find multiple circular shapes in a single
image, an accumulation matrix is computed by HCT. The

accumulation matrix of the parameter space, for example in
Figure [T1] contains the values of the central coordinates at
the peaks. If the z-value in the 3-dimensional space is higher
than a certain threshold, the circle is taken into account.

1144

1146
1148

Fig. 11: HCT parameter space accumulation matrix

The HCT algorithm is already implemented within the
OpenCV library in python. This is the version we used for
our cup detection [7].

C. YOLO

YOLO, acronym for “You Only Look Once”, is an object
detection algorithm that detects and recognizes items within
images in real-time. This approach is appreciated because of
its detection speed and accuracy. Recognition in YOLO is
performed as a regression task. What makes the algorithm
fast is that it only requires a single forward propagation
through the network to detect objects in whole images
[14]. YOLO implements Convolutional Neural Networks to
predict various classes and bounding boxes simultaneously.
It splits the images into cells, each of which is responsible
for predicting k£ bounding boxes. As we can observe in the
Figure [T2] each small square in the grid holds & vectors, in
this case 5, of size (5+ n.) with n. being the total number
of prediction classes [15]]. The first 5 elements of the vector
are the properties of the bounding box. The center of the
box is defined by the coordinate (b, by), the width and the
height by b,,, by, and p,. is the probability that class c is the
bounding box.

preprocessed image
(608, 608, 3)

encoding
(19,19, 5, 85)
19

¥

| | 1

\ P.b bbb,

Fig. 12: Bounding box regression

During the single pass of the forward propagation, YOLO
calculates the probability that the cell includes a specific
class. The corresponding equation is as follows:

5C0T€c i = P * C

The class with the highest probability is picked and
allocated to that particular grid cell. A similar process occurs
for all grid cells in the image. After calculating the above
class probabilities, the image may look like this:

car

road sign
tree

traffic light
sky
background

Fig. 13: Image after computing class probabilities

After the prediction of class probabilities, the next step
is called the non-max removal, which helps the algorithm
to eliminate unneeded anchor boxes. As we can see in the
Figure [T4] there are many anchor boxes calculated based on
class probabilities.

L

Fig. 14: Anchor boxes image

To solve this issue, non-max suppression function elimi-
nates bounding boxes that are very similar by performing
Intersection over Union (IoU) with the one that has the
highest class probability among them. Figure [I3] gives an
overview of how the method works.

Intersection Union Intersection over Union

) B
[
1

Fig. 15: Intersection over Union operation

YOLO rejects all bounding boxes that are covering the
same object whose IoU value exceeds a certain threshold.
This process is repeated until all the different bounding
boxes are obtained. The Figure [T7] gives an example of the
non-max suppression method effect.

Before non-max suppression After non-max suppression

Non-Max
Suppression

Fig. 16: Non-max suppression effect

To train a model of YOLO on our custom data, we used
the open-source ultralytics version on Google Colabora-
tory to take advantage of their GPU. The YOLO architecture
is composed of 25 layers, mainly standard convolution, 3-
dimensional convolution, tensor concatenation and the final
detection layer.

1) Custom Dataset

Our custom dataset consists of 388 images of the game
board with manually labeled with QR-codes and balls. To
train our YOLO model more robustly, we decided to add
random noisy objects to the board for each image. The
software used to label the images is called “makesense.ai”
[17]. It allowed us to export the files containing the labels
in the correct format for YOLO. For the training part, the
dataset was divided into two different sets. The training set,
composed of 273 images (=~ 70%) and the validation set
of 115 images (= 30%). We decided not to use a test set
in order to keep as many images as possible for training
purposes.

@ e
“ ball balE
Y o Vr 3

Fig. 17: Custom dataset image examples

The Figure [I8]shows some insights about the labels in our
custom dataset. The left bar plot shows that there are a larger
distribution of QR-code (= 650) than ball labels (=~ 350).
The density graph on the right is also interesting to observe
because it shows the most common locations of both types
of labels on a single plot at the same time. As expected,
the most frequent spot is around the two QR-codes. Besides
that, the other labels appear to be distributed normally.

Distribution of labels Location of labels

instances
Yy

0- 0.0-
0.0 0.2 0.4 0.6 0.8 1.0

ball
qr_code

Fig. 18: Label insights

D. Neural Magic

Neural Magic’s latest algorithms enable Convolutional
Neural Networks such as YOLO to run on commodity CPUs
at GPU speeds . To achieve this, it uses sparsification
through pruning of the model to reduce the weight’s size
by 10 times or more. Sparsification is the process of taking
a trained deep learning model and removing the redundant
information from the overprecise and over-parameterized
networks. Neural Magic provides the option to apply dif-
ferent types of recipes for model training, from pruned
to pruned quantized as shown in Figure [I9 Pruning is
the compression method of removing unnecessary weights
from a trained model. Quantization refers to the process
of approximating a neural network that uses floating-point
numbers to a lower bit width numbers.

Pruning

([]
R
o0 000

Quantization e “““m
uantizati A __....|i|| |||Iln-....u

Fig. 19: Pruning and quantization illustration

After training the sparsified model, the DeepSparse en-
gine can be used for cheaper inference deployment. The
DeepSparse engine is a CPU runtime that offers break-
through performance by leveraging the natural sparsity of
neural networks to reduce computational requirements and
accelerate memory workloads [19]. Figure [20] illustrates a
summary with the path we used for the sparsification of our
YOLO model.

E. Object Distance Measurement

To measure the distances between objects with SI units, it
starts with identifying a reference object. This object should
have two important properties. We must know its dimensions
in some measurable unit, and we must identify it easily in
the image [[10]. Our refrence objects are the QR-codes that

Dense Model Sparse Model

—— SparseML
— ® DeepSparse
NP i Engine

< Sparsify

Dense Model | 1 Sparse Model

Fig. 20: Summary to sparse acceleration

are part of the playing field. Next, it is sufficient to take the
results obtained by YOLO for the locations of the QR-codes
and by Hough Circle Transform for the positions of the cups.
Thanks to the euclidean distance formula we can calculate
the pixel distances between the centers of each cup and the
two QR-codes. In order to get them in centimeters, we need
a reference object ratio to divide them. The formula to
get the distance is the following:

distp,

ratio = g 1) @)

distey, = '
ratio

where p is the length of the reference object calculated

from YOLO in pixels and d is the length of the reference

object measured by hand in centimeters. Figure @ illustrates

a basic example of the object distance measurement method.

Reference Object

p = 50pz
d =10cm
ratio = L. 5
d -
> B
cup

dist,, = 80px

distp,

diste, = = 16¢cm

ratio
Fig. 21: Distance measurement example

Having distances in centimetres, it was easy to implement
a function to compute the ball speed by adding a time
parameter. The distance in cm between two detections of
the same ball is divided by the time spent between these
two detections. After conversion, if the speed is above 10
km/h, it is considered a throw. The direction from which the
ball is coming from, according to the QR-code helped us
to define when a throw was made either by a human or the
robot.

IV. EXPERIMENTS
A. Throwing Accuracy

Since we are using a look-up table, it is hard to come
up with a way to analyze the throwing accuracy of the
setup. Each value in the lookup table impacts a very small
region on the grid, so there is no general method to assess
quality of all entries together. Hence, the experiments mostly
focus on exploring the quality of the angle interpolation and
additionally provide us with useful insight into the accuracy
pattern of the setup. First, we measure accuracy out of 10

shots in the predefined positions in the lookup table that does
not require any approximations, to detect possible deviations
associated with the motor movement, setup shaking, etc.
Then, we make 10 shots into 10 different spots with known
delay values and 10 shots into different spots with “in-
between” delay values (that is, the target cup is located
“between the columns” in the look-up table). As it was
mentioned earlier, the delay values are taken from the look-
up table as they are, so it is interesting to see how well angle
interpolation does together with delay value that is crudely
approximated.

B. YOLO Algorithm Detection Accuracy

In order to test the full potential of YOLO on our setup,
we decided to tweak one of the main training parameters,
the resolution of the input images. We decided to go from
160x90 pixels image to 640x360, which should drastically
change the detection efficiency, as the difference in quality
is great. After being trained on our custom dataset of 388
images, the YOLO model was able to obtain some decent
results. Each model was trained over 200 epochs, which
represents about 5 hours of computation. In addition, an
early stop condition was implemented to avoid overtrain-
ing our models. If no learning improvement is noticeable
over the last 100 epochs, the process is stopped and the
weights saved. The following measurements will be used to
determine the effectiveness of YOLO prediction.

1) Confusion matrix:
A confusion matrix is a specific table that allows
the visualization of the performance of a learning
model, generally a supervised one. It enables us to
derive a variety of measurements that can reveal some
important prediction characteristics. Figure 22] shows
an example of what this looks like.

Positive Negative
[
2 TP FP
S
o
g
=} FN TN
©
[sT]
()
z

Fig. 22: Confusion matrix example

2) Precision:
Precision determines the ratio between the true pos-
itives and all the positives instances. A high value
means that our model returns more relevant results
than irrelevant ones. Precision is seen as a measure of
quality over quantity [21].

TP

precision — m

3) Recall:
Recall is the measure of our model correctly classify-
ing true positives [22]. A high value means that our
model returns most of the relevant results. Recall is
seen as a measure of quantity over quality [21].

TP

recall = ——
TP + FN

4) mAP@[.5]:

The Mean Average Precision (mAP) is a useful metric
for Computer Vision methods such as YOLO [23].
It is calculated using IoU that we already discussed
in section Figure [I5] The mAP@][.5] validates
the object’s prediction on a specific image if the IoU
scores above a threshold of 0.5. For example, if the
IoU value for a prediction is 0.7, then we classify the
prediction as a true positive instance. On the other
hand, if IoU is 0.3, we classify it as a false positive.
The formula is as follows:

1 #TP(c)
AP = ————
" |classes| Ced%;ses #TP(c)+ #FP(c)
where TP/FP defines the number of true

positive/false positive instances using a IoU threshold
of 0.5 [24].

5) mAP@][.5:.95]:
This metric is similar to the mAP@][.5] but deals with
different IoU thresholds, from 0.5 to 0.95 with a step
size of 0.05. An average among these thresholds is
then calculated.

C. Neural Magic Application

For this next experiment, we want to test the benefit of
using Neural Magic and the different tools it offers to train a
sparsified YOLO model and use a more powerful inference
engine. As mentioned in their documentation, this should
allow us to have lighter output weights for our model with
faster deployment. The task now is to verify whether opting
for inference speed rather than better detection performance
is a good decision for our setup or not. To address this
question, the identical experiment with the same data and
environment as the one used for YOLO was performed. The
objective is to obtain results that are as consistent as possible.

D. Computer Vision Limitations

After having the object detection model trained and all
the different components of the Computer Vision merged
together, we wanted to test the possible limitations of it.
The goal was to find out when the Computer Vision imple-
mentation could break down or be robust after changing the
state of the game environment. To determine this, some of
the main components of the setup were modified. First of
all, the intensity of the lights surrounding the game board
was tweaked. Since the lighting in the experimental room
was adjustable, the experiment was conducted during the

evening by building a custom scale from 0% to 100%. Then,
different amounts of Gaussian noise were applied to the
image. Finally, the speed of the thrown ball was gradually
increased to determine different speed detection threshold.

E. Framework

The experiments on YOLO and Neural Magic were
carried out using the open-source ultralytics project [16].
The deep learning part of this project was performed with
PyTorch 1.7.0 using the Google Colab GPU. Concerning
the hardware, the experiments were conducted on a laptop
composed of a 6-Core Intel i7 with an Intel UHD graphics
630 GPU and 16GB Ram.

V. RESULTS
A. Throwing Accuracy

From the first experiment we measured the accuracy of
70% to 90%. The ball went in the cup 7 times, 2 times it
bounced off the cup while being inside the cup. Therefore,
technically it can count as hit since the cups had sand instead
of water inside them to keep the ball dry.

The remaining two experiments reinforces the conclusion
that 90% should be taken as the standard accuracy of the
setup as they both generated 90% accuracy as well.

Throughout the experiments all misses that did not involve
the ball bouncing off inside the cup turned out to be
hits on the edge of the cup. All the missed targets were
then successfully hit by the very next shot without post-
miss calibration involved. The fact that the only observed
opportunity to miss is hitting the edge of the cup suggests
that adjusting the delay of the top motor by +10 after the
miss is an effective method to eventually hit the cup in
several attempts.

B. YOLO Algorithm Detection Accuracy

The bar plot in Figure 23] represents the confusion matri-
ces after YOLO training for the different input image reso-
Iutions. As we can see, the true positive and false positive
values for the custom labels are reported in a normalized
form. The two clusters on the left illustrate the percentage
of correct labels found by YOLO. Therefore, we can state
that higher resolution images lead to a slight increase in
performance in detecting ball instances. However, for QR
codes, even the lowest image definition can detect them
100%. The two clusters on the right define the difference
between ball and QR-code objects that are falsely detected
after the model is trained. This clearly proves that on average
more balls are detected in the background compared to QR-
codes for any image resolution.

The line charts in Table [[] shows both mAP@[.5] and
mAP@[.5:.95] metrics recorded over the training epochs of
YOLO. We can observe a small improvement in learning
speed with the increase of image resolution. Indeed, the
640x360 parameter appears to start converging in mAP@[.5]
after only 18 epochs, while the 160x90 images start converg-
ing after 50 epochs. On the other hand, the mAP@][.5 :.95]
learning curves are a bit more chaotic from the two highest

[160x90

1]] [320x180
] 640x360
gﬂ 0.8
g
5
2
S o6
=l
S
=]
£ 04
<}
4
0.2
Ball TP Qr-Code TP Ball FP Qr-Code FP

Fig. 23: Confusion matrix bar plot

image definitions but still get slightly better performance
than the lowest resolution.

TABLE I: mAP over Epochs

Resolution Graph

metrics/mAP_0.5 metrics/mAP_0.5:0.95
1.0

0.6
0.8
0.6 0.4
160x90 0.4
0.2
0.2
0.0 0.0
0 100 200

metrics/mAP_0.5:0.95

“‘5&

0 100 200

metrics/mAP_0.5

1.0
o8 0.6
0.6 0.4

320x180 0.4
0.2

0.2
0.0 0.0

0 100

metrics/mAP_0.5

—

o

100

metrics/mAP_0.5:0.95
1.0

0.8 0.6

0.4
640x360 0.6

0.4 0.2

i

0 100

o

100

To measure the precision and the recall of the models,
Precision-Recall Curve (PRC) are used and represented in
Table [The choice to use the PRC rather than the ROC

curves is due to the balancing of our custom dataset, Figure
[[8] ROC curves represent the trade-off between the true
positive and the false positive rate for a predictive model
using different probability thresholds. They are appropriate
when the observations are balanced between each class,
while the ROC curve is relevant for unbalanced datasets
[25]. As we can see in Table |m the three different models
perform well because the curve of all classes is close to the
upper right corner, which means that we have obtained a
model with perfect detection skill. Still, there is a larger
difference between the 160x90 model and the 320x180
model with an increase of 0.017 in the area under the
curve (corresponding to the mAP@[.5]) for the best values
compared to an increase of 0.007 between the 320x180
model and the 640x360 model.

TABLE II: Precision Recall Curve

Resolution Graph
10
0.8
0.6
160x90 "o
02 —— ball 0.936
qr_code 0.995
m—all classes 0.966 MAP@0.5
0.0
0.0 0.2 04 0.6 08 1.0
Recall
10
0.8
0.6
320x180 “oa
2l — ball0.971
qr_code 0.995
w3l classes 0.983 MAP@0.5
00
0.0 0.2 04 0.6 LX) 1.0
Recall
1.0
0.8
0.6
640x360 04
42) — ball 0.985
qr_code 0.995
= all classes 0.990 MAP@0.5
00

0.0 02 0.4 06 08 10
Recall

Regarding the frame rate at which YOLO can process
images, we have various ranges for the different resolutions

in Figure] The highest speed, between 13 and 16 fps,
is obtained with the lowest image definition. Similarly, the
lowest detection speed, between 2 and 3 fps, is achieved
with the highest resolution. In addition, the size of the file
containing the model weights is quite consistent among the
three different groups, at about 14.3 MB.

TABLE III: Frame Rate

Resolution 160x90 320x180 640x360
Weights 142 MB | 143 MB | 14.4 MB
fps 13-16 6-8 2-3

C. Neural Magic Application

There is no big difference in detection performance using
Neural Magic’s sparseml tool to train a sparsified version of
YOLO, as we can see in Figure 24] If we compare it to the
bar plot 23] the only point to mention is the gap between the
ball and the QR-code FPs which is smaller using the model
sparsification.

I 160x90
[320x180|]
T 640x360

< e
ES =

Normalized Percentage
<
2

02

Ball TP Qr-Code TP Ball FP Qr-Code FP

Fig. 24: Sparseml Confusion matrix bar plot

For the mAP results over the epochs (Table [V) and the
PRC (Table [V)), we decided to only keep the graphs of the
320x180 model in the core of the paper since the results
have not changed much nor add additional information. The
remaining figures are in the appendix, Table [X1] and XTI As
we can observe, Table [[V] proves that pruning the weights of
our model as well as its quantization has not reduced much
the detection efficiency of YOLO during learning in terms
of mAP. Its learning speed is a bit slower than previously in
Table [I| but it still starts to converge after 85 epochs.

Concerning the Precision-Recall Curve, the difference
between the original YOLO and its sparsified version is
minor. If we compare the graphs in Table [[I] and [V] they
are very close to each other. The only point to mention here
is a small 0.009 decrease in the area under the curve.

In Table [VI] the new fps values using the more powerful
Deepsparse inference engine are reported. The highest fps
obtained increased significantly compared to that obtained
with the original YOLO inference engine (Table , around
3x faster. Furthermore, the size of the model weight files has
been reduced to 7.2 MB, which is a reduction equivalent to
2x the previous size.

TABLE IV: Sparseml mAP over Epochs

TABLE VII: Lights Intensity

Resolution Graph Lights Image Detected
mAP@0.5 mMAP@0.5:0.95
1.0
e No detection in th
0.8 0% : o detection 1n the
image
0.6 0.4
320x180 0.4
0.2
0.2
0.0 0.0
0 200 0 200 - 2 QR-codes (87%),
° 1 ball (68%), 6 cups
TABLE V: Sparseml Precision Recall Curve
Resolution Graph
o 2 QR-codes (91%),
100% 1 ball (78%), 6 cups
320x180 o
but with a lower accuracy, about 80% for the QR-codes and
02{ —— ball 0.953 60% for the ball. Finally, with and o equal to 0.1, the
r_code 0.995 . . .
ol dasses 0.974 mAP@OS computer vision detection appears to be broken because no

0.0 0.2 0.4 06 08 10
Recall

D. Computer Vision Limitations
1) Lights

Table [VII] refers to the results obtained with the different
light intensities in the experimental room. As a result, the
Computer Vision is not able to detect cups or balls without
any light in the room. However, as soon as there are any
lights, all objects are detected in the frame up to the highest
intensity.

2) Image noise

Table [VIII] shows the results after applying Gaussian noise
to the input image with different mean (p) and standard
deviation (o) values ranging from 0.001 to 0.1 for both
parameters. As the values increases, the detection is less
efficient. With a value of 0.001 for the noise distribution
parameters, every object on the setup are detected. The two
QR codes are predicted with a probability of 92% and the
ball 72%. Afterwards, the Gaussian noise parameters are
multiplied by 10. In this case, the objects are still detected

TABLE VI: Deepsparse Frame Rate

Resolution 160x90 | 320x180 | 640x360
Weights 7.2 MB 7.2 MB 7.3 MB
fps 40 - 47 24 - 27 8-9

correct prediction is made and many random false positive
instances are predicted over the whole image.

TABLE VIII: Gaussian Noise

Noise Image Detected

0.001 2 QR-codes (92%),
o= 1 ball (72%), 6 cups
0.001

w= 2 QR-codes (80%)
0.01 + =~ 3 FP, 1 ball
o= (60%) + ~ 2 FP, 6
0.01 cups

w= No good QR-codes
0.1 + many FP, no good
o= ball + many FP, no
0.1 cups

3) Ball speed for detection

After throwing the ball several times at different speeds
between 25 and 60 km/h, we were able to approximately
discern the speed ranges at which the camera had trouble

detecting the ball using our model capable of producing
about 45 fps. This led us to construct confidence intervals
presented in the table [X] which shows the percentage of
balls detected below and up to a certain speed. As we can
see, below 35 km/h, the ball is always detected, above, the
ball can be missed by the computer vision. The maximum
speed detected was 67 km/h.

TABLE IX: Ball speed detection

25%
< 52km/h

50%
< 45km/h

75%
< 41km/h

100%
< 35km/h

Confidence
Ball speed

VI. DISCUSSION

Experiments conducted on the Computer Vision have
shown multiple interesting features through their results.
From section we learned that QR-codes were slightly
easier to detect than balls. This is certainly due to the fact
that QR-codes have a fixed square shape compared to the
balls, which can have either a circular shape or a sort of long
ellipse if the object is moving quickly and then blurred in the
dataset. There is also more contrast between the QR-codes
and the green background. Regarding the YOLO training,
we can say that after 320x180 resolution images, we do
not observe a significant increase in mAP, precision and
recall. This might be a good trade-off to stick to this picture
definition. In this section, we also noted the strong impact
of using higher image resolution for the real-time detection
speed. The interpretation of this effect is simply the big
difference in the total amount of pixels YOLO needs to
handle between the three image resolutions analyzed.

160x90 = 16200 pixels
320x180 = 64800 pixels
640x360 = 230400 pixels

In section we found that the use of pruning and
quantization of the YOLO model has not decreased the
prediction performance obtained previously. In addition, the
use of the Deepsparse inference engine has significantly
improved the detection rate by up to 3 times. The fact that
the weights files are twice as light as before played a role
for this, thanks to a less expensive model deployment.

The robustness results of the Computer Vision, tested in
section revealed a few interesting elements to mention.
Changing the lights in the room did not interfere much with
the detection as long as they were not turned off. This is
because YOLO is known to be very solid and the green
background helps it by not reflecting the lights. Concerning
the noise in the image, it starts breaking the Computer Vision
after adding a Gaussian noise with a mean and a standard
deviation of 0.01. This is explained by the fact that noise
interferes a lot with the pixel value in the image and YOLO
is not trained to have that much pixel variation in the input
frames. Regarding the ball speed, our experiments show
that the frame speed and the input image resolutions are

enough to always detect ball thrown below 35 km/h. Since
the average throwing speed of the robot is about 19 km/h
and about 25 km/h for the human, we can say that the ball
speed detection is efficient enough to not miss a single shot.

VII. CONCLUSION

In this research, we developed a “water pong” game that
allows human to play interactively with a robotic arm. The
main challenge was to develop a robust Computer Vision
capable of detecting several key objects such as the target
cups, the ball, and the QR-code reference element, along
with a means of calculating the optimal motor configuration
to shoot the targets. We relied on the well known YOLO
algorithm for the real-time object detection as well as Hough
Circle Transform to identify the cups locations. The option
to go for an extended lookup table with additional heuristics
to obtain the correct motor settings was employed. The
communication between the cups positions and the lookup
table made it possible for the robot to play the game targeting
and shooting in most of its opponent’s cups with a global
accuracy 90%. To the best of our knowledge, this is the
first working demonstration of a “water pong” game using
EDMO servo motors for the robotic setup.

VIII. FUTURE WORK

An improvement over the current state of the project
would be to implement a robust way to calibrate the lookup
table using the Computer Vision. To achieve this, we would
need a better equipment, both camera and computer in
order to measure less blur when the ball is moving fast
and increase the detection speed. This new feature would
improve the throwing accuracy by estimating when the ball
is overshooting or undershooting the targets.

REFERENCES

[1] C. Opfer. Robot Pingpong Coach Helps Players Up
Their Table Tennis Game. 2017. URL: https://science.
howstuffworks . com/table - tennis - pingpong - robot -
coach-forpheus.htm.

[2] R. Gassert and V. Dietz. Rehabilitation robots for the
treatment of sensorimotor deficits: a neurophysiolog-
ical perspective. 2018. URL: https://jneuroengrehab.
biomedcentral . com/articles/10.1186/s12984 - 018 -
0383-x

[3] A. LaFrance. Meet the Robot Champ of Beer Pong.
2015. URL: https://www.theatlantic.com/technology/
archive/2015/01/meet- the-robot-champion- of - beer-
pong/384285/.

[4] Empire Robotics. About us. 2014. URL: http://www.
empirerobotics.com/about/.

[5] R.Mockel, L. Dahl, and S. M. Christopher. Interdisci-
plinary Teaching with the Versatile Low-Cost Modular
Robotic Platform EDMO. 2019. URL: https://link.
springer.com/chapter/10.1007/978-3-030- 18141 -
3_11.

https://science.howstuffworks.com/table-tennis-pingpong-robot-coach-forpheus.htm
https://science.howstuffworks.com/table-tennis-pingpong-robot-coach-forpheus.htm
https://science.howstuffworks.com/table-tennis-pingpong-robot-coach-forpheus.htm
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-018-0383-x
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-018-0383-x
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-018-0383-x
https://www.theatlantic.com/technology/archive/2015/01/meet-the-robot-champion-of-beer-pong/384285/
https://www.theatlantic.com/technology/archive/2015/01/meet-the-robot-champion-of-beer-pong/384285/
https://www.theatlantic.com/technology/archive/2015/01/meet-the-robot-champion-of-beer-pong/384285/
http://www.empirerobotics.com/about/
http://www.empirerobotics.com/about/
https://link.springer.com/chapter/10.1007/978-3-030-18141-3_11
https://link.springer.com/chapter/10.1007/978-3-030-18141-3_11
https://link.springer.com/chapter/10.1007/978-3-030-18141-3_11

(6]

(7]

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

(23]

J. Flaherty. A Beanbag Robot Hand That Works In-
sanely Well. 2018. URL: https://www.wired.com/2014/
01/empire-robotics-jamming-robot/.

A. Rosebrock. Detecting Circles in Images using
OpenCV and Hough Circles. 2014. URL: https://www.
pyimagesearch.com/2014/07/21/detecting - circles -
1mages-using-opencv-hough-circles/.

Ultralytics. Getting Started. URL: https : / / docs .
ultralytics.com/quick-start/.

A-L. Nozieres. YOLOvS, End-to-End object detec-
tor project on custom dataset. 2021. URL: |https://
towardsdatascience.com/yolov5 - end- to- end - object-
detector-project-on-custom-dataset-5d9cc2¢95921.

A. Rosebrock. Measuring distance between objects
in an image with OpenCV. 2016. URL: https://www.
pyimagesearch.com/2016/04/04/measuring-distance-
between-objects-in-an-image-with-opencv/.

URL: https : // project . dke . maastrichtuniversity . nl /
SwarmLab/.

R. Harvey. Lecture 10: Hough Circle Transform.
2005. URL: https://www.cis.rit.edu/class/simg782/
lectures/lecture_10/1ec782_05_10.pdf.

H. Zhengzu. Find peak location in 2-d array. 2016.
URL: https://stackoverflow.com/questions/36652117/
find-peak-location-in-2-d-array,

G. Karimi. Introduction to YOLO Algorithm for Ob-
ject Detection. 2021. URL: https :// www . section .
10 / engineering - education / introduction - to - yolo -
algorithm-for-object-detection/.

Manishgupta. YOLO — You Only Look Once. 2020.
URL: https://towardsdatascience.com/yolo-you-only-
look-once-3dbdbb608ec4.

G. Jocher et al. yolov5. 2022. URL: |https://github.
com/ultralytics/yolov5,

P. Skalski. alpha makesense. URL: https:// www.
makesense.ai/.

Neural Magic. Deep Sparse. URL: https://neuralmagic.
com/.

Neural Magic. CPU inference engine that delivers
unprecedented performance for sparse models. 2022.
URL: https :// pythonrepo . com/ repo / neuralmagic -
deepsparse.

A. Rosebrock. Measuring distance between objects
in an image with OpenCV. 2021. URL: https://www.
pyimagesearch.com/2016/04/04/measuring- distance-
between-objects-in-an-image-with-opencv/.
Wikipedia. Precision and recall. URL: https://en.
wikipedia.org/wiki/Precision_and_recall.

P. Huilgol. Precision vs. Recall — An Intuitive Guide
for Every Machine Learning Person. 2020. URL: https:
/Iwww.analyticsvidhya.com/blog/2020/09/precision-
recall-machine-learning/.

S. Yohanandan. mAP (mean Average Precision) might
confuse you! 2020. URL: https://towardsdatascience.
com/map - mean - average - precision - might- confuse-
you-5956f1bfade2,

[24] B. Knox. What is the mAP metric and how is it

calculated? 2018. URL: https://stackoverflow.com/
questions/36274638/what- is - the - map - metric - and -
how-is-it-calculated.

[25] J. Brownlee. How to Use ROC Curves and Precision-

Recall Curves for Classification in Python. 2018.
URL: https://machinelearningmastery.com/roc-curves-
and - precision - recall - curves - for - classification - in -
python/.

APPENDIX

Table[X] gives an example of an image we used for training

with the different resolutions.

TABLE X: Different Resolutions Images Example

Resolution Image

160x90

320x180

640x360

Human cups: 3
Robot cups: 3
Ready

Robot (-oond |): .(o 10)
| Ball speed (km/h): 2.62
Fig. 25: Full Computer Vision example

https://www.wired.com/2014/01/empire-robotics-jamming-robot/
https://www.wired.com/2014/01/empire-robotics-jamming-robot/
https://www.pyimagesearch.com/2014/07/21/detecting-circles-images-using-opencv-hough-circles/
https://www.pyimagesearch.com/2014/07/21/detecting-circles-images-using-opencv-hough-circles/
https://www.pyimagesearch.com/2014/07/21/detecting-circles-images-using-opencv-hough-circles/
https://docs.ultralytics.com/quick-start/
https://docs.ultralytics.com/quick-start/
https://towardsdatascience.com/yolov5-end-to-end-object-detector-project-on-custom-dataset-5d9cc2c95921
https://towardsdatascience.com/yolov5-end-to-end-object-detector-project-on-custom-dataset-5d9cc2c95921
https://towardsdatascience.com/yolov5-end-to-end-object-detector-project-on-custom-dataset-5d9cc2c95921
https://www.pyimagesearch.com/2016/04/04/measuring-distance-between-objects-in-an-image-with-opencv/
https://www.pyimagesearch.com/2016/04/04/measuring-distance-between-objects-in-an-image-with-opencv/
https://www.pyimagesearch.com/2016/04/04/measuring-distance-between-objects-in-an-image-with-opencv/
https://project.dke.maastrichtuniversity.nl/SwarmLab/
https://project.dke.maastrichtuniversity.nl/SwarmLab/
https://www.cis.rit.edu/class/simg782/lectures/lecture_10/lec782_05_10.pdf
https://www.cis.rit.edu/class/simg782/lectures/lecture_10/lec782_05_10.pdf
https://stackoverflow.com/questions/36652117/find-peak-location-in-2-d-array
https://stackoverflow.com/questions/36652117/find-peak-location-in-2-d-array
https://www.section.io/engineering-education/introduction-to-yolo-algorithm-for-object-detection/
https://www.section.io/engineering-education/introduction-to-yolo-algorithm-for-object-detection/
https://www.section.io/engineering-education/introduction-to-yolo-algorithm-for-object-detection/
https://towardsdatascience.com/yolo-you-only-look-once-3dbdbb608ec4
https://towardsdatascience.com/yolo-you-only-look-once-3dbdbb608ec4
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://www.makesense.ai/
https://www.makesense.ai/
https://neuralmagic.com/
https://neuralmagic.com/
https://pythonrepo.com/repo/neuralmagic-deepsparse
https://pythonrepo.com/repo/neuralmagic-deepsparse
https://www.pyimagesearch.com/2016/04/04/measuring-distance-between-objects-in-an-image-with-opencv/
https://www.pyimagesearch.com/2016/04/04/measuring-distance-between-objects-in-an-image-with-opencv/
https://www.pyimagesearch.com/2016/04/04/measuring-distance-between-objects-in-an-image-with-opencv/
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/
https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/
https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2
https://stackoverflow.com/questions/36274638/what-is-the-map-metric-and-how-is-it-calculated
https://stackoverflow.com/questions/36274638/what-is-the-map-metric-and-how-is-it-calculated
https://stackoverflow.com/questions/36274638/what-is-the-map-metric-and-how-is-it-calculated
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/

TABLE XI: Sparseml mAP over Epochs

Resolution Graph
mAP@0.5 mAP@0.5:0.95
0.6
0.8 0.5
0.4
0.6
0.3
0.4
160x90 02
0.2 01
0.0 0.0
0 200 0 200
mMAP@0.5 mMAP@0.5:0.95
1.0
0.8 0.6
0.6 04
640x360 0.4
0.2
0.2
0.0 0.0
0 200 0 200

TABLE XII: Sparseml Precision Recall Curve

Resolution Graph
10
08
0.6
K
160x90 04
0.2 ball 0.834
qr_code 0.995
all classes 0.915 mAP@0.5
%% 0.2 0.4 0.6 038 10
Recall
1.0 _=¥
0.8
0.6
640x360 "o

0.2

ball 0.992
qr_code 0.996
all classes 0.994 mMAP@0.5

02 04 06 08
Recall

	Introduction
	Related Work

	Hardware and Environment Setup
	Microcontroller
	Motors
	Spoon
	Ball
	Cups
	Camera
	Environment and Setup

	Methodologies
	Look-up Table
	Hough Circle Transform
	YOLO
	Custom Dataset

	Neural Magic
	Object Distance Measurement

	Experiments
	Throwing Accuracy
	YOLO Algorithm Detection Accuracy
	Neural Magic Application
	Computer Vision Limitations
	Framework

	Results
	Throwing Accuracy
	YOLO Algorithm Detection Accuracy
	Neural Magic Application
	Computer Vision Limitations
	Lights
	Image noise
	Ball speed for detection

	Discussion
	Conclusion
	Future Work

