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Abstract

Image segmentation of medical images is a crucial application in computer vision, as
it can replace clinicians in performing time-consuming and critical tasks. One of the
key architectures in this field is the U-net, which serves as the basis for many newer
architectures such as the Swin-UNETR that utilizes Swin transformers blocks to achieve
state-of-the-art performance. Other researchers have proposed various implementations
using different convolutional blocks or alterations to the shortcuts path between the
encoder and decoder. However, comparing the efficacy of different architectural choices
can pose a challenge, as each research team typically has its own distinct preprocessing
steps and pipeline optimizations to improve their results. Thus, the aim of this study
is to compare proposed architectural modifications against a U-net baseline under a
fixed set of hyper-parameters, with the goal of providing meaningful comparisons on the
Medical Image Segmentation Decathlon datasets Simpson et al. (2019). After performing
a 5-fold cross-validation analysis on the heart and lung datasets, we found that the most
promising design modification was adding convolutional layers to the shortcut path,
despite not reaching statistical significance. We then tested this modified model, along
with the U-net baseline and Swin-UNETR, on all datasets and found that it had the best
overall performance with an average rank of 1.59 across all tasks. Transformers-based
models were not able to perform as well as convolution-based ones. It is assumed
that preprocessing and data augmentation may play a crucial role in the performance
presented in those papers, and further studies including these factors could help close
the gap between our study and the literature.

1 Introduction

Image segmentation is a technique in computer vision that involves dividing an image
into multiple regions or segments based on specific criteria. In medical imaging, image
segmentation is crucial for analyzing MRI or CT scans to identify organs or track the size
and location of tumors. However, the process of manually segmenting medical images is
time-consuming and can be prone to error. That’s why there has been growing interest
in developing automatic image segmentation algorithms that can accurately and efficiently
analyze medical images. By automating the segmentation process, clinicians can save time
and resources, allowing them to focus on other aspects of patient care (Simpson et al., 2019).

The U-net architecture is widely used for medical image segmentation and has been the
subject of many iterations proposed by the research community (Ronneberger et al., 2015)
.However, comparing the results of different U-net implementations can be challenging since
there are many variables that can impact performance and accuracy such as varying data
processing strategies. To address this issue, the goal of this work is to implement several
versions of the U-net architecture using a consistent framework. By controlling the size of
the model and training hyper-parameters, we can more accurately compare the performance
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of different U-net models and evaluate the impact of different design choices. By analyzing
the results of our experiments, we hope to gain insights into which U-net variations are most
effective for different medical imaging tasks in the Medical segmentation decathlon datasets.
Our study specifically focuses on exploring modifications at three different scales. Firstly,
we investigate changes at the level of the convolutional blocks. As such, we compare two
Resblock iterations and a ConvNext block to the original U-net implementation. Next, we
experiment with different improvement for the shortcut connections. One approach involves
using convolutional blocks between the encoder and decoder, while the second approach
employs a self-attention mechanism with the downstream representation of the encoder as
the query. Finally, we explore architectural variations with simplified versions of the decoder
(Half-Unet) and an encoder based on the Swin-UNETR that utilizes transformers.

We have chosen to primarily focus our work on the heart and lung datasets due to their
relatively manageable size and the distinct nature of the tasks involved. Additionally, we
aim to train the best performing model on all MSD datasets and submit our result to the
ongoing competition.

2 Litterature review

The U-net architecture is called "U-net" because of its U-shaped design. The network consists
of a contracting path, which is used to capture the context of the image, and an expanding
path, which is used to obtain a segmentation map of the image. The contracting path starts
with a series of convolutional layers, which are used to extract features from the input image.
The output of each convolutional layer is passed through a rectified linear unit (ReLU)
activation function, which introduces non-linearity into the model. The number of filters
in each convolutional layer is gradually increased, while the size of the image is reduced
through pooling layers. This process is repeated several times to capture higher-level features
of the image. At every steps, a shortcut paths connect with the corresponding dimension
of the expending path (decoder) to be concatenated or added with encoded informations.
The expanding path is used to reconstruct the segmentation map of the image. This path
consists of a sequence of up-convolutions and valid convolutions. Additionally, the output
of an up-convolutional layer in the expanding path is concatenated with the output of the
corresponding layer in the contracting path. This process is repeated several times, with
each up-convolutional layer followed by a convolutional layer. The number of filters in each
convolutional layer is gradually decreased, while the size of the image is gradually increased
(Ronneberger et al., 2015). Recent research in medical image segmentation still relies on
the U architecture. One notable example is the Swin-UNETR, which takes inspiration from
transformer-based computer vision models to improve long-range information retention. The
Swin transformer blocks replace the convolutional blocks in the encoder of traditional U-nets.
These transformer blocks utilize patch embedding before applying self-attention to a window
of patches, followed by a shifted window self-attention mechanism. Layer normalization is
applied between each step, and an MLP layer is used between each attention application. A
convolutional block is used on the skip connection between the encoder and decoder, while the
decoder itself continues to use convolutional blocks like the classic U-net. In addition, those
convolutional blocks are modified to included a residual connection around two convolutions.
The researchers evaluated their model on a brain tumor segmentation dataset and achieved
state-of-the-art performance (Hatamizadeh et al., 2022).

Other researchers have also explored the use of transformers to improve performance
on various segmentation tasks. One such model is the U-net Transformer, which uses
self-attention between the convolutional layers and cross-attention on the skip connection,
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Figure 1: The U-net architecture is presented in this figure. The left side illustrates the
contracting path of the encoder leading up to the bottleneck, while the right side
displays the upsampling and convolution process of the decoder, along with the
concatenation of the skip connections from the encoder

instead of replacing the convolutional blocks like the Swin-UNETR. This approach has shown
improvements over the original U-net architecture in various segmentation tasks (Petit et al.,
2021). The U-net architecture can also be utilized as a preprocessing tool for segmentation
tasks, as demonstrated in the work on SNEMI3D by Kisuk Lee’s team. In their study, a
modified U-net model is employed to predict affinities between neighboring voxels. Unlike
the original U-net, their model uses convolutional blocks consisting of a sequence of three
convolutions with a residual connection between the last two (Lee et al., 2017). Also, the
U-net model has been optimized for efficiency without sacrificing performance through recent
research. One example is the Half-U-net, which proposes a simplified version of the encoder
and decoder without compromising performance but with a significant increase in FLOPs.
In this iteration, the decoder does not contain any convolution and only upsamples the
shortcuts from the encoders before merging them using summation (Lu et al., 2022).

3 Methods

Two baseline models will be implemented for comparison with other experiments: Swin-
UNETR, which represents the current state-of-the-art, and the original U-net. As all other
experiments will involve only minor alterations relative to this baseline implementation, the
original U-net will serve as a suitable comparison point. Our baseline implementation is
based on the work done by Ronneberger and his team in 2015 (Ronneberger et al., 2015). We
will modify the original architecture at three levels: convolution blocks, shortcut connections
between the encoder and decoder, and architectural variations in the decoder.

The Medical Image Decathlon datasets comprise ten tasks that focus on different organs,
such as the brain, pancreas, liver, and heart. The tasks vary across these organs, with some
identifying different types of tumors, while others focus on partitioning organs. The data
consists of 3D or 4D CT scans or MRIs, which are computationally heavy and challenging
to work with without appropriate hardware. The fourth dimension corresponds to different
types of scans. For this reason, we first trained and evaluated our experiments on the heart
and lung datasets via 5-fold cross-validation over 100 epochs. Only the highest-performing
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model, the U-net and Swin-UNETR baselines will be trained and evaluated on all datasets in
the official competition. We chose the heart and lung datasets as their sizes are manageable,
and their tasks vary in difficulty. The heart dataset involves partitioning the heart, while the
lung dataset focuses on detecting small tumors.

For all experiments, we perform a hyperparameter sweep using the Bayesian search
algorithm to tune the learning rate. We utilize the Adam optimizer for all implementations.
Each experiment on the lung and heart datasets is trained on 5-fold cross-validation to ensure
robustness in our results. We keep hyperparameters, such as the depth of neural networks,
constant across all experiments. Furthermore, we do not apply any preprocessing to the
original images, besides normalization and resizing. The loss function used for training these
models is a weighted sum of the cross-entropy and dice losses.

To identify the optimal number of epochs for the best model and two baselines across all
datasets after the best model is selected, we evaluate their performance on a validation set
using a patience parameter of 30 and a maximum of 1000 epochs. We select the number of
epochs that yield the best results to train each model on the entire dataset.

In this study, we explore three types of convolutional blocks. Two of these blocks are
conventional residual blocks. The first block, ResBlock1, simply adds a residual connection
around the two basic convolutional blocks of the baseline U-net model. The second block,
Resblock2, is based on the U-net architecture used by Kisuk Lee’s team in the SNEMI3D
Connectomics Challenge. It adds a convolutional block before the same structure as the first
residual block, resulting in a total of three convolutional blocks per residual block (Lee et al.,
2017). Finally, we also investigate a third alternative derived from the well-known ConvNext
architecture (Liu et al., 2022). These blocks are described in figure 2.

(a) Residual Block 1 (b) Residual Block 2 (c) ConvNext Block

Figure 2: The studied blocks are illustrated in this figure. The first set of blocks introduces a
residual connection around the convolutions in the block to enhance the information
flow. The second set adds a sequence of convolutions in front of the previous block for
improved feature extraction. For both the first and second residual blocks, 3× 3× 3
convolutions are used. Finally, the third set comprises ConvNext blocks, similar to
the ones used in modern computer vision convolutional models.

In our study, we investigate two modifications to the encoder-decoder connection, as
previously mentioned. The first type involves incorporating convolutional blocks into the
skip connections, as demonstrated in the Swin-UNETR decoder (Hatamizadeh et al., 2022).
The second type entails introducing a cross-attention module inspired by Oliver Petit’s
team’s work on U-net Transformers (Petit et al., 2021). However, our approach differs
from their implementation as we condition the attention mechanism using the downstream
representation as the query. Additionally, we attempt an iteration of Residual Block 1 on
the shortcut connection, inspired by the Swin-UNETR decoder, which has a convolution
block dedicated solely to processing the residual connection (Hatamizadeh et al., 2022). This
architectural change is referred to as the Conv-Skip model.
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(a) Residual Block (b) Attention Mechanism

Figure 3: Changes made to the skip connections between the encoder and decoder are demon-
strated in this image. The first modification involves the addition of 3 × 3 × 3
convolutions to the pathway, while the second one incorporates a cross-attention
mechanism, with the downstream layer acting as the query.

Finally, we explore an alternative version of the decoder called the Half-Unet, which is a
simplified variation of the original U-net architecture (Lu et al., 2022). The Half-Unet also
uses summation with the skip-connections from the encoder, as opposed to concatenation used
in the previous U-net implementation. Our models are evaluated using the dice coefficient

Figure 4: Half-Unet decoder is depicted in the following figure. The decoder has undergone
significant changes, with all convolutions being removed and only upsampling remain-
ing. Additionally, the concatenation operation has been replaced with summation to
manage the sizes without convolutions

metric, commonly used in segmentation tasks, which takes into account both recall and
precision. We also evaluate the best model and both the U-net and Swin-UNETR baselines
by computing their average rank across all the test sets. A score closer to 1 indicates better
performance across a wide variety of tasks. In addition to performance evaluation, we analyze
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the computational efficiency of our models using the floating-point operations per second
(FLOPs) metric.

4 Results

As previously stated, each model, including the baselines, was evaluated using a 5-fold
approach on the heart and lung dataset. To account for the complexity of each fold’s dataset,
the scores of each fold were compared to those of the U-net baseline for the same fold.
The results on the Resblock1 implementation produces highly variable results across the
folds in both datasets. Conversely, the ConvNext block exhibits greater stability, but its
average performance is lower than that of all other U-net iterations. As a result, experiments
involving these implementations were terminated. Figures 5 and Table 1 present the results
of each remaining model on the heart and lung dataset.

Dataset Model Val. Dice Val. FWD Val.
p-value Train Dice Train FWD Train

p-value
U-net 0.81±0.03 NA. 0.84±0.009 NA.

Swin-UNETR 0.8±0.05 -0.0026±0.032 0.0 0.89±0.01 0.046±0.018 0.0
Half-UNet 0.74±0.06 -0.072±0.044 0.0 0.84±0.04 -0.007±0.036 0.0
Resblock-1 0.51±0.5 -0.3±0.43 0.1 0.53±0.5 -0.32±0.48 0.16
Resblock-2 0.79±0.04 -0.012±0.044 0.35 0.83±0.03 -0.011±0.039 0.0
ConvNext 0.46±0.08 -0.35±0.075 0.0 0.53±0.05 -0.32±0.05 0.0
Trans-Unet 0.77±0.05 -0.034±0.037 0.0 0.86±0.01 0.02±0.0053 0.0
Conv-Skip 0.81±0.03 -0.0015±0.022 0.18 0.84±0.01 -0.006±0.017 0.93

Heart

Conv-Skip-Resblock-2 0.82±0.02 0.01±0.01 0.22 0.85±0.01 0.0074±0.0073 0.89
Unet 0.34±0.07 NA. 0.45±0.03 NA.

Swin-UNETR 0.28±0.05 -0.062±0.063 0.0 0.64±0.02 0.19±0.018 0.0
Half-Unet 0.074±0.03 -0.27±0.056 0.0 0.19±0.06 -0.26±0.055 0.0
Resblock-2 0.31±0.08 -0.03±0.07 0.67 0.42±0.09 -0.028±0.098 0.81
Trans-Unet 0.14±0.1 -0.2±0.093 0.0 0.34±0.2 -0.11±0.21 0.66
Conv-Skip 0.35±0.09 0.0093±0.052 0.82 0.5±0.02 0.054±0.02 0.0002

Lung

Conv-Skip-Resblock-2 0.27±0.2 -0.069±0.13 0.03 0.35±0.2 -0.1±0.17 0.0

Table 1: This table presents the outcomes of the 5-fold cross-validation study on different
models trained on both heart and lung datasets. The presented results are based on
foreground dice scores, which refer to the heart class for the heart dataset and the
tumor class for the lung dataset. FWD corresponds to the fold-wise difference with
the U-net baseline, and the p-values indicate the probability of observing the 5-fold
dice score under the U-net score distribution.

The Swin-UNETR and Trans-Unet models have shown better performance than the
baseline on the training set, with dice scores of 0.89 and 0.86 respectively. However, their
performance on the validation sets has been poor, with scores of only 0.8 and 0.77. Similarly,
the Half-Unet model has also shown a decrease in performance on the validation set, with a
dice score dropping from 0.84 on the training set to 0.74 on the validation set. These three
models have also shown an increased variance in performance across folds on the validation
sets. In contrast, the models that incorporate convolutions on their skip connections have
shown improvement in both training and validation sets. The Conv-Skip model has an
average dice score of 0.81, which is as good as the U-net model. Meanwhile, the Conv-skip
model using Resblock 2 slightly outperforms them, with a dice score of 0.82. The Resblock 2
convolution blocks have also demonstrated good performance and exhibited greater stability
across folds than the first iteration of the residual block. The segmentation task for the Lung
dataset is more challenging than the previous dataset, as it involves identifying small tumors
instead of segmenting the whole organ, and the dataset is larger. It was expected that models
with higher capacity, such as those incorporating transformers, would demonstrate superior
performance on this task compared to the previous one.

The segmentation task on the lung dataset is more challenging, resulting in lower
performance for all models. However, the relative performance of the models is similar to
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Figure 5: Foreground dice fold-wise difference with the U-net baseline. To evaluate the perfor-
mance of various models, we calculated the foreground Dice score difference compared
to the U-net baseline using a fold-wise approach. Specifically, we subtracted the
training and validation foreground Dice scores of each fold of the U-net baseline
model from the corresponding folds of the models under investigation, including
Swin-UNETR, Half-Unet, U-net with Resblock 2, Trans-Unet, Unet-Conv-Skip, and
Unet-Conv-Skip-Res2. We utilized a bootstrapping methodology to estimate the
mean distribution used to compute the two-tailed p-values.

Dataset Region U-net Swin-UNETR Conv-Skip
L1 0.643 0.627 0.652
L2 0.432 0.398 0.436BrainTumour
L3 0.665 0.628 0.655

Heart L1 0.837 0.819 0.810
L1 0.939 0.929 0.938Liver L2 0.522 0.376 0.498
L1 0.873 0.870 0.885Hippocampus L2 0.881 0.873 0.884
L1 0.630 0.508 0.621Prostate L2 0.850 0.797 0.851

Lung L1 0.465 0.275 0.427
L1 0.618 0.501 0.674Pancreas L2 0.083 0.088 0.236
L1 0.457 0.423 0.407HepaticVessel L2 0.376 0.310 0.452

Spleen L1 0.757 0.877 0.913
Colon L1 0.209 0.044 0.121

Average Rank 1.647 2.765 1.588

Table 2: The performance of three models, U-net, Swin-UNETR, and Conv-skip, on all test
sets in the Medical Segmentation Decathlon is presented. The metric used to evaluate
the models is the dice score, and the results are tabulated. The average rank of each
model is reported to enable a comprehensive comparison of their performance.

that on the heart dataset. Swin-UNETR performs better than the baseline on the training
set, with a dice score of 0.64, but does not generalize well to the validation sets, with a score
of only 0.28. Meanwhile, Trans-Unet performs the worst on both training and validation
sets, with an average score of 0.34 and 0.14, respectively, and exhibits an increased variance
in performance across folds. On the other hand, Conv-skip shows improvements over the
baseline with a validation score of 0.82, while ResBlock 2 scores below the baseline with a dice
score of 0.31. However, ResBlock 2 on the shortcut connection shows even lower performance
than the baseline on average, with a dice score of 0.27. Additionally, the variance across
folds on the validation set is greater for this task, even for the better-performing models,
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which could be attributed to the increased complexity of the lung segmentation task.The
Half-Unet model’s performance is below the baseline for both datasets and overall very low
for the validation sets, which could be due to the model’s decreased capacity resulting from
the simplification of the decoder. It is important to consider the trade-off between efficiency
and performance when evaluating whether the current simplification is worth the cost. It
would also be helpful to assess the cost of performance increases for more promising models.
Through analyzing this data, we can determine whether the potential benefits outweigh the
costs.

Figure 6: Heart validation dataset Figure 7: Lung validation dataset

Figure 8: Dice score for the validation sets of both tasks is plotted against the FLOPs metric
to illustrate the relationship between performance and computational efficiency for
all studied models

FLOPs is a widely used metric in computational efficiency measurement in computer
science. The higher the FLOPs, the more computationally expensive the code is. Figure 6
indicates that the two most efficient models had poor performance and were terminated.
While the Trans-Unet implementation is the most computationally expensive among the
models, it does not perform as well as some of the other models. The Half-Unet model has
a similar FLOPs count to the other models in the experiment, but it does not perform as
well.After conducting a more detailed examination, it has become evident that the convolution
operation may not be the most expensive process in the decoder. Rather, it seems that the
upsampling operation is more resource-intensive than initially estimated. Furthermore, the
exclusion of the convolution operation appears to have a negative impact on performance.
Resblock2 and Conv-Skip models have similar performance to each other in terms of Dice
score and FLOPs efficiency. On average, they perform slightly better than the baseline
U-net on the heart task but slightly worse on the lung task. However, they have a higher
FLOPs cost than U-net. It is still unclear if the highest computational cost is worth it in
this case. U-net-Conv-Skip2 performs similarly to the other Conv-Skip models on the heart
task but does not perform as well on more challenging tasks like lung tumors. Finally, while
Swin-UNETR has a similar FLOPs cost to the other models, its performance is not as good.

The Conv-Skip model was selected to train on all datasets due to its comparable validation
performance to the baseline on the heart datasets and slightly better performance on the lung
datasets. The model’s performance also appears to be more stable than the other models.
The increase in FLOPs is reasonable when compared to the other non-baseline models.
However, the transformer-based model did not improve the performance of the standard
U-net. One possible explanation for this is the lack of data augmentation or preprocessing
in the study. Medical imaging datasets are often small and expensive to obtain labeled
examples, and it is well-known that transformer models perform better with large datasets.
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Moreover, the fixed depth of the model used in the study may limit its performance since the
aim of transformers is to enhance long-range information retention, which may require deeper
implementations. It is unlikely that these implementations will achieve state-of-the-art scores
in the competition, as no data preprocessing or ensembling methods have been employed.
The primary objective is to compare the best-performing model with the baseline on the test
sets for all tasks.

Table 2 displays the test set results for the competition across all datasets. The Swin-
UNETR implementation exhibited inferior performance compared to other models across all
tasks. The optimal performance between U-net and Conv-Skip varied not only from task
to task but also among different classes within a task. For example, in the HepaticVessel
dataset, U-net outperformed Conv-Skip on the L1 region with a score of 0.457, whereas
Conv-Skip performed better on L2 with a score of 0.452 compared to U-net’s score of 0.407
and 0.376, respectively. Overall, Conv-Skip appeared to perform better on most classes of
the BrainTumour, Hippocampus, Pancreas, and Spleen, while U-net performed better on
the Heart, Liver, and Colon datasets. However, the performance of both models on other
datasets varied based on the class, and it remains unclear what specific dataset characteristics
caused one model to outperform the other. On average, Conv-Skip appeared to perform
better on more classes and had a higher average rank with 1.588 than the baseline U-net
with 1.647.

5 Conclusion

In this study, it was found that only a limited number of models performed better than the
standard U-net implementation. The Residual block and ConvNext block were removed from
the study because of their subpar performance. Simplifying the decoder in Half-Unet did not
contribute significantly to efficiency gains and resulted in reduced overall performance. The
state-of-the-art transformers-based models, including Swin-UNETR and Trans-Unet, were
not able to match the performance of the U-net.The Conv-Skip model demonstrated the best
performance, and adding a convolutional layer improved the performance of the residual block,
making it as effective as, if not better than, the U-net baseline and the Conv-Skip model on
most datasets. However, the performance of the best implementation, Conv-Skip, was not
statistically significant enough to claim superiority over the classic U-net implementation.
To enhance the study further, it would be worthwhile to consider incorporating pretreatment
techniques and utilizing larger models in future research. Specifically, investigating the
effects of data augmentation would be of great interest, particularly in determining whether
models that utilize attention mechanisms and have greater capacity can outperform those
based on convolution. However, implementing these modifications may require additional
computational resources, such as larger GPUs or clusters, to handle larger datasets and
models. With these enhancements to the methodology, the study could achieve results that
are more comparable to those presented in the original paper and closer to the current
state-of-the-art.
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